
Chhoyhopper: A Moving Target Defense with IPv6

A S M Rizvi
asmrizvi@usc.edu

Chhoyhopper: A Moving Target Defense with IPv6

Research support by DARPA under Contract No. HR001120C0157

ACSAC 2021 Virtual Poster Session / December 2021

John Heidemann
johnh@isi.edu

Introduction

Chhoyhopper Design

Services on the public Internet are frequently scanned, then subject to

brute-force and denial-of-service attacks. We would like to run such

services stealthily, available to friends but hidden from

adversaries. In this work, we propose a moving target defense named

“Chhoyhopper” that utilizes the vast IPv6 address space to conceal

publicly available services. The client and server hop to different

IPv6 addresses in a pattern based on a shared, pre-distributed secret

and the time of day. By hopping over a /64 prefix, services cannot be

found by active scanners, and passively observed information is

useless after two minutes. We demonstrate our system with the two

important applications—SSH and HTTPS.

This poster presents the design and implementation of Chhoyhopper

with SSH and HTTPS applications.

Address hopping pattern:
▪ Client and server must follow the same hopping pattern to

rendezvous.

▪ Client and server share a pre-distributed key and salt value.

▪ The server and the client compute the same temporary address

by computing a cryptographic hash (we use SHA-256) of the

shared secret, a salt value, and the current time in minutes.

▪ Using NAT, (i) only the current IPv6 address will be translated

to the internal service address, (ii) we keep the existing

connections, and (iii) traffic with the other target addresses will

be dropped.

Our goal is to allow the client to rendezvous with the server on a

public, but temporary IPv6 address. By allocating the temporary

address from a large space (2^64 addresses), scanning is impractical.

▪ We provide a Python script that runs the server by updating

ip6tables rules, NAT rules, and interface addresses.

Getting rendezvous address:

▪ We get the IPv6 address of a domain name using DNS.

▪ We keep the first 64 bits and replace the last 64 bits using the

generated value from the hash function with key, salt, and

timestamp.

▪ The server updates the address every minute. To handle clock

drift, the server keeps two addresses at a given time.

Chhoyhopper Implementation

SSH

Server running Chhoyhopper for SSH

Client connecting to Chhoyhopper SSH server

HTTPS
▪ For HTTPS, we have two challenges.

▪ Transparency: users want service like any other HTTPS service.

Solution: browser extension to run Chhoyhopper.

▪ TLS authentication: IP-based TLS certificates do not support

wildcarding and a static DNS name would reveal the destination.

Solution: TLS certificate for a wildcard domain name, then

dynamically create hopping domain name under that wildcard.

Dynamic DNS maps hopping name to the changing IPv6 address.

▪ We currently provide this extension for Mozilla Firefox.

Server running Chhoyhopper for HTTPS

Browser extension redirects client to the current domain name

Risk of Discover and Collisions

Risks of discover and collisions are tiny.

Discovery: not in our lifetime! Scanning at 100 Gb/s, expected

time to discover one server in one /64 is 3000 years.

Collision: it takes a million servers to get a collision in 70 years.

Collisions are like the birthday problem, but in a “year” with 2^64

days. The probability of collision is 1 − 𝑒
−𝑘 𝑘 −1

2𝑁 , with N = 2^64

for k servers.

Conclusions
▪ We show the design and implementation of Chhoyhopper.

▪ We plan to provide a Chhoyhopper client as a patch to

OpenSSH and provide HTTPS support for Chrome.

▪ Our implementation for SSH and HTTPS applications is freely

available at: https://ant.isi.edu/software/chhoyhopper/.

https://ant.isi.edu/software/chhoyhopper/

